极限运算是针对 自变量的同一变化过程
1. 极限运算法则
- 定理1 两个无穷小的和是无穷小
α : ? ε > 0 , ? δ 1 > 0 , 0 < ∣ x ? x 0 ∣ < δ 1 , ∣ α ∣ < ε 2 \alpha: \forall \varepsilon >0,\exists \delta_1>0,0<|x-x_0|<\delta_1,|\alpha|<\dfrac{\varepsilon}{2} α:?ε>0,?δ1?>0,0<∣x?x0?∣<δ1?,∣α∣<2ε?
β : ? ε > 0 , ? δ 2 > 0 , 0 < ∣ x ? x 0 ∣ < δ 1 , ∣ β ∣ < ε 2 \beta: \forall \varepsilon >0,\exists \delta_2>0,0<|x-x_0|<\delta_1,|\beta|<\dfrac{\varepsilon}{2} β:?ε>0,?δ2?>0,0<∣x?x0?∣<δ1?,∣β∣<2ε?
γ = α + β : ? ε > 0 , ? δ = min ? { δ 1 , δ 2 } > 0 , 0 < ∣ x ? x 0 ∣ < δ , ∣ γ ∣ = ∣ α + β ∣ < ε \gamma=\alpha+\beta: \forall \varepsilon >0,\exists \delta=\min\{\delta_1,\delta_2\}>0,0<|x-x_0|<\delta,|\gamma|=|\alpha+\beta|<\varepsilon γ=α+β:?ε>0,?δ=min{δ1?,δ2?}>0,0<∣x?x0?∣<δ,∣γ∣=∣α+β∣<ε- 有限个无穷小之和也是无穷小
(数学归纳法) P ( 2 ) = f 1 ( x ) + f 2 ( x ) P(2)=f_1(x)+f_2(x) P(2)=f1?(x)+f2?(x),由定理1显然成立
假设 P ( k ) ( k ≥ 2 ) = ∑ i = 1 k f i ( x ) P(k)(k\ge 2)=\sum\limits_{i=1}^kf_i(x) P(k)(k≥2)=i=1∑k?fi?(x)成立
P ( k + 1 ) = P ( k ) + f k + 1 ( x ) P(k+1)=P(k)+f_{k+1}(x) P(k+1)=P(k)+fk+1?(x),由定理1显然成立 - 定理2 有界函数与无穷小的乘积是无穷小
α : ? ε > 0 , ? δ 1 > 0 , x ∈ U ° ( x 0 , δ 1 ) , ∣ α ∣ < ε M \alpha: \forall \varepsilon >0,\exists \delta_1>0,x \in \overset{\circ}{U}(x_0,\delta_1),|\alpha|<\dfrac{\varepsilon}{M} α:?ε>0,?δ1?>0,x∈U°(x0?,δ1?),∣α∣<Mε?
f ( x ) : x ∈ U ° ( x 0 , δ 2 ) , ∣ f ( x ) ∣ ≤ M f(x): x \in \overset{\circ}{U}(x_0,\delta_2),|f(x)|\le M f(x):x∈U°(x0?,δ2?),∣f(x)∣≤M
α f ( x ) : δ = min ? { δ 1 , δ 2 } , x ∈ U ° ( x 0 , δ ) , ∣ α f ( x ) ∣ ≤ ε \alpha f(x): \delta=\min\{\delta_1,\delta_2\},x \in \overset{\circ}{U}(x_0,\delta),|\alpha f(x)|\le \varepsilon αf(x):δ=min{δ1?,δ2?},x∈U°(x0?,δ),∣αf(x)∣≤ε- 推论1 常数与无穷小的乘积是无穷小
- 推论2 有限个无穷小的乘积是无穷小
α 1 : ? ε > 0 , ? δ 1 > 0 , x ∈ U ° ( x 0 , δ 1 ) , ∣ α ∣ < ε 1 n \alpha_1: \forall \varepsilon >0,\exists \delta_1>0,x \in \overset{\circ}{U}(x_0,\delta_1),|\alpha|<\varepsilon^{\frac{1}{n}} α1?:?ε>0,?δ1?>0,x∈U°(x0?,δ1?),∣α∣<εn1?
α 2 : ? ε > 0 , ? δ 2 > 0 , x ∈ U ° ( x 0 , δ 2 ) , ∣ α ∣ < ε 1 n \alpha_2: \forall \varepsilon >0,\exists \delta_2>0,x \in \overset{\circ}{U}(x_0,\delta_2),|\alpha|<\varepsilon^{\frac{1}{n}} α2?:?ε>0,?δ2?>0,x∈U°(x0?,δ2?),∣α∣<εn1?
. . . ... ...
α n : ? ε > 0 , ? δ n > 0 , x ∈ U ° ( x 0 , δ n ) , ∣ α ∣ < ε 1 n \alpha_n: \forall \varepsilon >0,\exists \delta_n>0,x \in \overset{\circ}{U}(x_0,\delta_n),|\alpha|<\varepsilon^{\frac{1}{n}} αn?:?ε>0,?δn?>0,x∈U°(x0?,δn?),∣α∣<εn1?
∏ i = 1 n α i : δ = min ? { δ 1 , δ 2 , … , δ n } > 0 , x ∈ U ° ( x 0 , δ ) , ∣ α ∣ < ε \prod\limits_{i=1}^n\alpha_i: \delta=\min\{\delta_1,\delta_2,\dots,\delta_n\}>0,x \in \overset{\circ}{U}(x_0,\delta),|\alpha|<\varepsilon i=1∏n?αi?:δ=min{δ1?,δ2?,…,δn?}>0,x∈U°(x0?,δ),∣α∣<ε - 定理3 如果
lim
?
f
(
x
)
=
A
,
lim
?
g
(
x
)
=
B
\lim f(x)=A,\lim g(x)=B
limf(x)=A,limg(x)=B,那么
( 1 ) lim ? [ f ( x ) ± g ( x ) ] = lim ? f ( x ) ± lim ? g ( x ) = A ± B (1) \lim [f(x)\pm g(x)]=\lim f(x)\pm \lim g(x)=A\pm B (1)lim[f(x)±g(x)]=limf(x)±limg(x)=A±B
( 2 ) lim ? [ f ( x ) ? g ( x ) ] = lim ? f ( x ) ? lim ? g ( x ) = A ? B (2) \lim[f(x)·g(x)]=\lim f(x)·\lim g(x)=A·B (2)lim[f(x)?g(x)]=limf(x)?limg(x)=A?B
( 3 ) lim ? f ( x ) g ( x ) = lim ? f ( x ) lim ? g ( x ) = A B ( B ≠ 0 ) (3)\lim \dfrac{f(x)}{g(x)}=\dfrac{\lim f(x)}{\lim g(x)}=\dfrac{A}{B}(B\ne 0) (3)limg(x)f(x)?=limg(x)limf(x)?=BA?(B=0)f ( x ) = A + α , g ( x ) = B + β f(x)=A+\alpha,g(x)=B+\beta f(x)=A+α,g(x)=B+β
( 1 ) lim ? [ f ( x ) ± g ( x ) ] = A ± B + lim ? [ α ± β ] ? ∣ α ± β ∣ ≤ ∣ α ∣ + ∣ β ∣ (1) \lim [f(x)\pm g(x)]=A\pm B+\lim[\alpha\pm\beta]\Leftarrow|\alpha\pm\beta|\le|\alpha|+|\beta| (1)lim[f(x)±g(x)]=A±B+lim[α±β]?∣α±β∣≤∣α∣+∣β∣
lim ? f ( x ) ± lim ? g ( x ) = A ± B + lim ? α ± lim ? β \lim f(x)\pm \lim g(x)=A\pm B+\lim\alpha\pm\lim \beta limf(x)±limg(x)=A±B+limα±limβ
( 2 ) lim ? [ f ( x ) ? g ( x ) ] = lim ? ( A B + A β + B α + α β ) = A B + A lim ? β + B lim ? α + lim ? ( α β ) ? ∣ α β ∣ = ∣ α ∣ ∣ β ∣ (2) \lim[f(x)·g(x)]=\lim(AB+A\beta+B\alpha+\alpha\beta)=AB+A\lim\beta+B\lim\alpha+\lim(\alpha\beta)\Leftarrow|\alpha\beta|=|\alpha||\beta| (2)lim[f(x)?g(x)]=lim(AB+Aβ+Bα+αβ)=AB+Alimβ+Blimα+lim(αβ)?∣αβ∣=∣α∣∣β∣
lim ? f ( x ) ? lim ? g ( x ) = ( A + lim ? α ) ( B + lim ? β ) = A B + A lim ? β + B lim ? α + lim ? α ? lim ? β \lim f(x)·\lim g(x)=(A+\lim\alpha)(B+\lim\beta)=AB+A\lim\beta+B\lim\alpha+\lim\alpha\cdot\lim\beta limf(x)?limg(x)=(A+limα)(B+limβ)=AB+Alimβ+Blimα+limα?limβ
( 3 ) γ = f ( x ) g ( x ) ? A B = A + α B + β ? A B = ( B α ? A β ) 1 B ( B + β ) ? ∣ 1 B ∣ ? ∣ 1 g ( x ) ∣ < 2 B 2 , x ∈ U ° ( x 0 ) (3)\gamma=\dfrac{f(x)}{g(x)}-\dfrac{A}{B}=\dfrac{A+\alpha}{B+\beta}-\dfrac{A}{B}=(B\alpha-A\beta)\dfrac{1}{B(B+\beta)}\Leftarrow|\dfrac{1}{B}|\cdot|\dfrac{1}{g(x)}|<\dfrac{2}{B^2},x\in\overset{\circ}{U}(x_0) (3)γ=g(x)f(x)??BA?=B+βA+α??BA?=(Bα?Aβ)B(B+β)1??∣B1?∣?∣g(x)1?∣<B22?,x∈U°(x0?)( B ≠ 0 B\ne 0 B=0,函数极限的定理 3 ′ 3' 3′)
lim ? f ( x ) lim ? g ( x ) = A + lim ? α B + lim ? β \dfrac{\lim f(x)}{\lim g(x)}=\dfrac{A+\lim\alpha}{B+\lim\beta} limg(x)limf(x)?=B+limβA+limα?- 推论1 如果 lim ? f ( x ) \lim f(x) limf(x)存在,而 c c c为常数,那么 lim ? [ c f ( x ) ] = c lim ? f ( x ) \lim [cf(x)]=c\lim f(x) lim[cf(x)]=climf(x)
- 推论2 如果 lim ? f ( x ) \lim f(x) limf(x)存在,且 n n n是正整数,那么 lim ? [ f ( x ) ] n = [ lim ? f ( x ) ] n \lim[f(x)]^n=[\lim f(x)]^n lim[f(x)]n=[limf(x)]n
- 定理4 设有数列 { x n } \{x_n\} {xn?}和 { y n } \{y_n\} {yn?}。如果 lim ? n → ∞ x n = A , lim ? n → ∞ y n = B \lim_{n\rightarrow\infin}x_n=A,\lim_{n\rightarrow\infin}y_n=B n→∞lim?xn?=A,n→∞lim?yn?=B那么 ( 1 ) lim ? n → ∞ ( x n ± y n ) = A ± B ????????? ( 2 ) lim ? n → ∞ ( x n ? y n ) = A ? B ??????????????? ( 3 ) lim ? n → ∞ x n y n = A B ( y n ≠ 0 , B ≠ 0 ) (1)\lim_{n\rightarrow\infin}(x_n\pm y_n)=A\pm B\ \ \ \ \ \ \ \ \ \\(2)\lim_{n\rightarrow\infin}(x_n·y_n)=A·B\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \\(3)\lim_{n\rightarrow\infin}\frac{x_n}{y_n}=\dfrac{A}{B}(y_n\ne0,B\ne0) (1)n→∞lim?(xn?±yn?)=A±B?????????(2)n→∞lim?(xn??yn?)=A?B???????????????(3)n→∞lim?yn?xn??=BA?(yn?=0,B=0)
- 定理5 如果
?
(
x
)
≥
ψ
(
x
)
\phi(x)\ge\psi(x)
?(x)≥ψ(x),而
lim
?
?
(
x
)
=
A
,
lim
?
ψ
(
x
)
=
B
\lim\phi(x)=A,\lim\psi(x)=B
lim?(x)=A,limψ(x)=B,那么
A
≥
B
A\ge B
A≥B
f ( x ) = ? ( x ) ? ψ ( x ) ≥ 0 f(x)=\phi(x)-\psi(x)\ge 0 f(x)=?(x)?ψ(x)≥0,根据极限的保号性的推论,有:
A ? B = lim ? ? ( x ) ? lim ? ψ ( x ) = lim ? [ ? ( x ) ? ψ ( x ) ] ≥ 0 A-B=\lim\phi(x)-\lim\psi(x)=\lim[\phi(x)-\psi(x)]\ge 0 A?B=lim?(x)?limψ(x)=lim[?(x)?ψ(x)]≥0 - 定理6(复合函数的极限运算法则)
设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]是由函数 u = g ( x ) u=g(x) u=g(x)与函数 y = f ( u ) y=f(u) y=f(u)复合而成, f [ g ( x ) ] f[g(x)] f[g(x)]在点 x 0 x_0 x0?的某去心邻域内有定义,若 lim ? x → x 0 g ( x ) = u 0 , lim ? u → u 0 f ( u ) = A , \lim_{x\rightarrow x_0}g(x)=u_0,\lim_{u\rightarrow u_0}f(u)=A, x→x0?lim?g(x)=u0?,u→u0?lim?f(u)=A,且存在 δ 0 > 0 , \delta_0>0, δ0?>0,当 x ∈ U ° ( x 0 , δ 0 ) x\in \overset{\circ}{U}(x_0,\delta_0) x∈U°(x0?,δ0?)时,有 g ( x ) ≠ u 0 g(x)\ne u_0 g(x)=u0?,则 lim ? x → x 0 f [ g ( x ) ] = lim ? u → u 0 f ( u ) = A \lim_{x\rightarrow x_0}f[g(x)]=\lim_{u\rightarrow u_0}f(u)=A x→x0?lim?f[g(x)]=u→u0?lim?f(u)=Alim ? x → x 0 g ( x ) = u 0 ? ? η > 0 , ? δ 1 > 0 , x ∈ U ° ( x 0 , δ 1 ) , ∣ g ( x ) ? u 0 ∣ < η \lim\limits_{x\rightarrow x_0}g(x)=u_0\Lrarr \forall\eta>0,\exists \delta_1>0,x\in\overset{\circ}{U}(x_0,\delta_1),|g(x)-u_0|<\eta x→x0?lim?g(x)=u0???η>0,?δ1?>0,x∈U°(x0?,δ1?),∣g(x)?u0?∣<η
? δ 0 > 0 , x ∈ U ° ( x 0 , δ 0 ) , g ( x ) ≠ u 0 \exists \delta_0>0,x\in \overset{\circ}{U}(x_0,\delta_0),g(x)\ne u_0 ?δ0?>0,x∈U°(x0?,δ0?),g(x)=u0?
δ = min ? { δ 0 , δ 1 } , x ∈ U ° ( x 0 , δ ) , g ( x ) ∈ U ° ( x 0 , η ) \delta=\min\{\delta_0,\delta_1\},x\in\overset{\circ}{U}(x_0,\delta),g(x)\in\overset{\circ}{U}(x_0,\eta) δ=min{δ0?,δ1?},x∈U°(x0?,δ),g(x)∈U°(x0?,η)
lim ? u → u 0 f ( u ) = A ? ? ε > 0 , ? η > 0 , u ∈ U ° ( u 0 , η ) , ∣ f ( u ) ? A ∣ < ε \lim\limits_{u\rightarrow u_0}f(u)=A\Lrarr \forall\varepsilon>0,\exists \eta>0,u\in\overset{\circ}{U}(u_0,\eta),|f(u)-A|<\varepsilon u→u0?lim?f(u)=A??ε>0,?η>0,u∈U°(u0?,η),∣f(u)?A∣<ε
? ε > 0 , ? η > 0 , δ > 0 , x ∈ U ° ( x 0 , δ ) , u = g ( x ) ∈ U ° ( x 0 , η ) , ∣ f [ g ( x ) ] ? A ∣ = ∣ f ( u ) ? A ∣ < ε \forall\varepsilon>0,\exists \eta>0,\delta>0,x\in\overset{\circ}{U}(x_0,\delta),u=g(x)\in\overset{\circ}{U}(x_0,\eta),|f[g(x)]-A|=|f(u)-A|<\varepsilon ?ε>0,?η>0,δ>0,x∈U°(x0?,δ),u=g(x)∈U°(x0?,η),∣f[g(x)]?A∣=∣f(u)?A∣<ε
2. 极限运算方法
- 设多项式 f ( x ) = a 0 x n + a 1 x n ? 1 + . . . + a n f(x)=a_0x^n+a_1x^{n-1}+...+a_n f(x)=a0?xn+a1?xn?1+...+an?,则 lim ? x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_0}f(x)=f(x_0) x→x0?lim?f(x)=f(x0?)
- 设有理分式函数 F ( x ) = P ( x ) Q ( x ) , F(x)=\frac{P(x)}{Q(x)}, F(x)=Q(x)P(x)?,其中 P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x)都是多项式,于是 lim ? x → x 0 P ( x ) = P ( x 0 ) , lim ? x → x 0 Q ( x ) = Q ( x 0 ) \lim_{x\rightarrow x_0}P(x)=P(x_0),\lim_{x\rightarrow x_0}Q(x)=Q(x_0) x→x0?lim?P(x)=P(x0?),x→x0?lim?Q(x)=Q(x0?)如果 Q ( x 0 ) ≠ 0 Q(x_0)\ne 0 Q(x0?)=0,那么 lim ? x → x 0 F ( x ) = lim ? x → x 0 P ( x ) Q ( x ) = P ( x 0 ) Q ( x 0 ) = F ( x 0 ) \lim_{x\rightarrow x_0}F(x)=\lim_{x\rightarrow x_0}\frac{P(x)}{Q(x)}=\frac{P(x_0)}{Q(x_0)}=F(x_0) x→x0?lim?F(x)=x→x0?lim?Q(x)P(x)?=Q(x0?)P(x0?)?=F(x0?)如果 Q ( x 0 ) = 0 Q(x_0)= 0 Q(x0?)=0,那么要考虑约去零因子以及 lim ? x → ∞ a 0 x m + a 1 x m ? 1 + . . . + a m b 0 x n + b 1 x n ? 1 + . . . + b n = { 0 , n > m a 0 b 0 , n = m ∞ , n < m \lim_{x\rightarrow \infin}\frac{a_0x^m+a_1x^{m-1}+...+a_m}{b_0x^n+b_1x^{n-1}+...+b_n}=\begin{cases}0,&n>m\\\dfrac{a_0}{b_0},&n=m\\\infin,&n<m\end{cases} x→∞lim?b0?xn+b1?xn?1+...+bn?a0?xm+a1?xm?1+...+am??=? ? ??0,b0?a0??,∞,?n>mn=mn<m?等特殊方法